Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

Q is empty.


QTRS
  ↳ AAECC Innermost

Q restricted rewrite system:
The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

Q is empty.

We have applied [15,7] to switch to innermost. The TRS R 1 is

sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)

The TRS R 2 is

process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The signature Sigma is {process, if3, if1, if2}

↳ QTRS
  ↳ AAECC Innermost
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)


Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

IF3(store, m, false) → SNDSPLIT(m, app(map_f(self, nil), store))
PROCESS(store, m) → LENGTH(store)
SNDSPLIT(s(n), cons(h, t)) → SNDSPLIT(n, t)
IF2(store, m, false) → PROCESS(app(map_f(self, nil), sndsplit(m, store)), m)
IF3(store, m, false) → PROCESS(sndsplit(m, app(map_f(self, nil), store)), m)
IF2(store, m, false) → APP(map_f(self, nil), sndsplit(m, store))
IF1(store, m, true) → FSTSPLIT(m, store)
IF2(store, m, false) → MAP_F(self, nil)
MAP_F(pid, cons(h, t)) → APP(f(pid, h), map_f(pid, t))
IF1(store, m, true) → EMPTY(fstsplit(m, store))
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF3(store, m, false) → APP(map_f(self, nil), store)
FSTSPLIT(s(n), cons(h, t)) → FSTSPLIT(n, t)
IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
IF1(store, m, false) → MAP_F(self, nil)
IF1(store, m, false) → FSTSPLIT(m, app(map_f(self, nil), store))
IF1(store, m, false) → EMPTY(fstsplit(m, app(map_f(self, nil), store)))
APP(cons(h, t), x) → APP(t, x)
IF3(store, m, false) → MAP_F(self, nil)
LENGTH(cons(h, t)) → LENGTH(t)
IF2(store, m, false) → SNDSPLIT(m, store)
PROCESS(store, m) → LEQ(m, length(store))
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
LEQ(s(n), s(m)) → LEQ(n, m)
MAP_F(pid, cons(h, t)) → MAP_F(pid, t)
IF1(store, m, false) → APP(map_f(self, nil), store)

The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ EdgeDeletionProof

Q DP problem:
The TRS P consists of the following rules:

IF3(store, m, false) → SNDSPLIT(m, app(map_f(self, nil), store))
PROCESS(store, m) → LENGTH(store)
SNDSPLIT(s(n), cons(h, t)) → SNDSPLIT(n, t)
IF2(store, m, false) → PROCESS(app(map_f(self, nil), sndsplit(m, store)), m)
IF3(store, m, false) → PROCESS(sndsplit(m, app(map_f(self, nil), store)), m)
IF2(store, m, false) → APP(map_f(self, nil), sndsplit(m, store))
IF1(store, m, true) → FSTSPLIT(m, store)
IF2(store, m, false) → MAP_F(self, nil)
MAP_F(pid, cons(h, t)) → APP(f(pid, h), map_f(pid, t))
IF1(store, m, true) → EMPTY(fstsplit(m, store))
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF3(store, m, false) → APP(map_f(self, nil), store)
FSTSPLIT(s(n), cons(h, t)) → FSTSPLIT(n, t)
IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
IF1(store, m, false) → MAP_F(self, nil)
IF1(store, m, false) → FSTSPLIT(m, app(map_f(self, nil), store))
IF1(store, m, false) → EMPTY(fstsplit(m, app(map_f(self, nil), store)))
APP(cons(h, t), x) → APP(t, x)
IF3(store, m, false) → MAP_F(self, nil)
LENGTH(cons(h, t)) → LENGTH(t)
IF2(store, m, false) → SNDSPLIT(m, store)
PROCESS(store, m) → LEQ(m, length(store))
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
LEQ(s(n), s(m)) → LEQ(n, m)
MAP_F(pid, cons(h, t)) → MAP_F(pid, t)
IF1(store, m, false) → APP(map_f(self, nil), store)

The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.
We deleted some edges using various graph approximations

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
QDP
              ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

IF3(store, m, false) → SNDSPLIT(m, app(map_f(self, nil), store))
PROCESS(store, m) → LENGTH(store)
IF3(store, m, false) → PROCESS(sndsplit(m, app(map_f(self, nil), store)), m)
IF2(store, m, false) → PROCESS(app(map_f(self, nil), sndsplit(m, store)), m)
SNDSPLIT(s(n), cons(h, t)) → SNDSPLIT(n, t)
IF2(store, m, false) → APP(map_f(self, nil), sndsplit(m, store))
IF2(store, m, false) → MAP_F(self, nil)
IF1(store, m, true) → FSTSPLIT(m, store)
MAP_F(pid, cons(h, t)) → APP(f(pid, h), map_f(pid, t))
PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF1(store, m, true) → EMPTY(fstsplit(m, store))
IF3(store, m, false) → APP(map_f(self, nil), store)
FSTSPLIT(s(n), cons(h, t)) → FSTSPLIT(n, t)
IF1(store, m, false) → MAP_F(self, nil)
IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))
IF1(store, m, false) → FSTSPLIT(m, app(map_f(self, nil), store))
IF1(store, m, false) → EMPTY(fstsplit(m, app(map_f(self, nil), store)))
APP(cons(h, t), x) → APP(t, x)
LENGTH(cons(h, t)) → LENGTH(t)
IF3(store, m, false) → MAP_F(self, nil)
IF2(store, m, false) → SNDSPLIT(m, store)
PROCESS(store, m) → LEQ(m, length(store))
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
LEQ(s(n), s(m)) → LEQ(n, m)
MAP_F(pid, cons(h, t)) → MAP_F(pid, t)
IF1(store, m, false) → APP(map_f(self, nil), store)

The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 7 SCCs with 15 less nodes.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
QDP
                    ↳ QDPOrderProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP(cons(h, t), x) → APP(t, x)

The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


APP(cons(h, t), x) → APP(t, x)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
APP(x1, x2)  =  x1
cons(x1, x2)  =  cons(x2)

Recursive path order with status [2].
Quasi-Precedence:
trivial

Status:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
QDP
                    ↳ QDPOrderProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MAP_F(pid, cons(h, t)) → MAP_F(pid, t)

The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


MAP_F(pid, cons(h, t)) → MAP_F(pid, t)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
MAP_F(x1, x2)  =  x2
cons(x1, x2)  =  cons(x2)

Recursive path order with status [2].
Quasi-Precedence:
trivial

Status:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ QDPOrderProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LENGTH(cons(h, t)) → LENGTH(t)

The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


LENGTH(cons(h, t)) → LENGTH(t)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
LENGTH(x1)  =  x1
cons(x1, x2)  =  cons(x2)

Recursive path order with status [2].
Quasi-Precedence:
trivial

Status:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ QDPOrderProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

LEQ(s(n), s(m)) → LEQ(n, m)

The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


LEQ(s(n), s(m)) → LEQ(n, m)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
LEQ(x1, x2)  =  x2
s(x1)  =  s(x1)

Recursive path order with status [2].
Quasi-Precedence:
trivial

Status:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ QDPOrderProof
                  ↳ QDP
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SNDSPLIT(s(n), cons(h, t)) → SNDSPLIT(n, t)

The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


SNDSPLIT(s(n), cons(h, t)) → SNDSPLIT(n, t)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
SNDSPLIT(x1, x2)  =  x2
cons(x1, x2)  =  cons(x2)

Recursive path order with status [2].
Quasi-Precedence:
trivial

Status:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
                  ↳ QDP
                  ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
QDP
                    ↳ QDPOrderProof
                  ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

FSTSPLIT(s(n), cons(h, t)) → FSTSPLIT(n, t)

The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


FSTSPLIT(s(n), cons(h, t)) → FSTSPLIT(n, t)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Combined order from the following AFS and order.
FSTSPLIT(x1, x2)  =  x2
cons(x1, x2)  =  cons(x2)

Recursive path order with status [2].
Quasi-Precedence:
trivial

Status:
trivial


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                    ↳ QDPOrderProof
QDP
                        ↳ PisEmptyProof
                  ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ AAECC Innermost
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ EdgeDeletionProof
            ↳ QDP
              ↳ DependencyGraphProof
                ↳ AND
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
                  ↳ QDP
QDP

Q DP problem:
The TRS P consists of the following rules:

PROCESS(store, m) → IF1(store, m, leq(m, length(store)))
IF1(store, m, false) → IF3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
IF3(store, m, false) → PROCESS(sndsplit(m, app(map_f(self, nil), store)), m)
IF2(store, m, false) → PROCESS(app(map_f(self, nil), sndsplit(m, store)), m)
IF1(store, m, true) → IF2(store, m, empty(fstsplit(m, store)))

The TRS R consists of the following rules:

fstsplit(0, x) → nil
fstsplit(s(n), nil) → nil
fstsplit(s(n), cons(h, t)) → cons(h, fstsplit(n, t))
sndsplit(0, x) → x
sndsplit(s(n), nil) → nil
sndsplit(s(n), cons(h, t)) → sndsplit(n, t)
empty(nil) → true
empty(cons(h, t)) → false
leq(0, m) → true
leq(s(n), 0) → false
leq(s(n), s(m)) → leq(n, m)
length(nil) → 0
length(cons(h, t)) → s(length(t))
app(nil, x) → x
app(cons(h, t), x) → cons(h, app(t, x))
map_f(pid, nil) → nil
map_f(pid, cons(h, t)) → app(f(pid, h), map_f(pid, t))
process(store, m) → if1(store, m, leq(m, length(store)))
if1(store, m, true) → if2(store, m, empty(fstsplit(m, store)))
if1(store, m, false) → if3(store, m, empty(fstsplit(m, app(map_f(self, nil), store))))
if2(store, m, false) → process(app(map_f(self, nil), sndsplit(m, store)), m)
if3(store, m, false) → process(sndsplit(m, app(map_f(self, nil), store)), m)

The set Q consists of the following terms:

fstsplit(0, x0)
fstsplit(s(x0), nil)
fstsplit(s(x0), cons(x1, x2))
sndsplit(0, x0)
sndsplit(s(x0), nil)
sndsplit(s(x0), cons(x1, x2))
empty(nil)
empty(cons(x0, x1))
leq(0, x0)
leq(s(x0), 0)
leq(s(x0), s(x1))
length(nil)
length(cons(x0, x1))
app(nil, x0)
app(cons(x0, x1), x2)
map_f(x0, nil)
map_f(x0, cons(x1, x2))
process(x0, x1)
if1(x0, x1, true)
if1(x0, x1, false)
if2(x0, x1, false)
if3(x0, x1, false)

We have to consider all minimal (P,Q,R)-chains.